A New Short Oligonucleotide-Based Strategy for the Precursor-Specific Regulation of microRNA Processing by Dicer

نویسندگان

  • Anna Kurzynska-Kokorniak
  • Natalia Koralewska
  • Agata Tyczewska
  • Tomasz Twardowski
  • Marek Figlerowicz
چکیده

The precise regulation of microRNA (miRNA) biogenesis seems to be critically important for the proper functioning of all eukaryotic organisms. Even small changes in the levels of specific miRNAs can initiate pathological processes, including carcinogenesis. Accordingly, there is a great need to develop effective methods for the regulation of miRNA biogenesis and activity. In this study, we focused on the final step of miRNA biogenesis; i.e., miRNA processing by Dicer. To test our hypothesis that RNA molecules can function not only as Dicer substrates but also as Dicer regulators, we previously identified by SELEX a pool of RNA oligomers that bind to human Dicer. We found that certain of these RNA oligomers could selectively inhibit the formation of specific miRNAs. Here, we show that these specific inhibitors can simultaneously bind both Dicer and pre-miRNAs. These bifunctional riboregulators interfere with miRNA maturation by affecting pre-miRNA structure and sequestering Dicer. Based on these observations, we designed a set of short oligomers (12 nucleotides long) that were capable of influencing pre-miRNA processing in vitro, both in reactions involving recombinant human Dicer and in cytosolic extracts. We propose that the same strategy may be used to develop effective and selective regulators to control the production of any miRNA. Overall, our findings indicate that the interactions between pre-miRNAs and other RNAs may form very complex regulatory networks that modulate miRNA biogenesis and consequently gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of Cyclin D1 specific siRNAs by double strand processing for gene therapy of esophageal squamous cell carcinoma

Background: RNAi (RNA interference) is a new strategy in gene therapy and biotechnology which provides new promises in the treatment of different diseases such as cancer and viral diseases. CCND1 which is a key gene in cell cycle is amplified and over expressed in esophageal cancer. The objective of this study was production and siRNAs for CCND1, the key gene in cell cycle. Materials and Metho...

متن کامل

The terminal loop region controls microRNA processing by Drosha and Dicer

microRNAs are widely expressed, ∼22-nt-long regulatory RNAs. They are first transcribed as much longer primary transcripts, which then undergo a series of processing steps to yield the single-stranded, mature microRNAs, although the mechanisms are incompletely understood. Here, we show that the terminal loop region of human primary microRNA transcripts is an important determinant of microRNA bi...

متن کامل

Dissecting the interactions of SERRATE with RNA and DICER-LIKE 1 in Arabidopsis microRNA precursor processing

Efficient and precise microRNA (miRNA) biogenesis in Arabidopsis is mediated by the RNaseIII-family enzyme DICER-LIKE 1 (DCL1), double-stranded RNA-binding protein HYPONASTIC LEAVES 1 and the zinc-finger (ZnF) domain-containing protein SERRATE (SE). In the present study, we examined primary miRNA precursor (pri-miRNA) processing by highly purified recombinant DCL1 and SE proteins and found that...

متن کامل

Cellular microRNAs Repress Vesicular Stomatitis Virus but Not Theiler's Virus Replication.

Picornavirus' genomic RNA is a positive-stranded RNA sequence that also serves as a template for translation and replication. Cellular microRNAs were reported to interfere to different extents with the replication of specific picornaviruses, mostly acting as inhibitors. However, owing to the high error rate of their RNA-dependent RNA-polymerases, picornavirus quasi-species are expected to evolv...

متن کامل

Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing

RNA interference is implemented through the action of the RNA-induced silencing complex (RISC). Although Argonaute2 has been identified as the catalytic center of RISC, the RISC polypeptide composition and assembly using short interfering RNA (siRNA) duplexes has remained elusive. Here we show that RISC is composed of Dicer, the double-stranded RNA binding protein TRBP, and Argonaute2. We demon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013